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Using the stability matrix method, the occurrence of locally unstable states in the water

molecule has been shown. Detailed analysis of this problem reveals a dependence of the

state stability on the rotational quantum numbers Jand k, as well as on the rotation about

the z axis perpendicular to the molecular plane, i.e. on the rotation at which the Coriolis

coupling reaches a maximum.
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Dynamics of quantum states is governed by the time-dependent Schroedinger

equation [1], whose solution gives the probability of finding a state described by the

wave function �n(r) after time t at the nth energy level. This probability depends on

the matrix elements of Hamiltonian, which describes the external or internal force

field imposed on the molecule considered. The main conclusion following from this

approach is that the decay of excited states is ruled by the matrix element of the

perturbation operator.

The above described mechanism does not lead to any anomalies in the stability of

the excited states as long as the matrix elements of the perturbation operators,

expressed in the base of electronic states or rovibrational states, do not show any

anomalies. The problem of changes in population of excited states is of key import-

ance to understand the photochemical processes taking place in a molecule [2–5],

dynamics of chemical reactions, and the emission spectra of atoms and molecules.

According to recent literature, deactivation of excited states does not always run

according to the above scheme, and can show many deviations and anomalies [6–10].

The deviations are mainly related to an extension or shortening of a lifetime at a given

energy level, relative to the lifetimes of the neighbouring levels. As indicated in

[8–11], the most convenient way to analyse the problem is based on the use of the

stability matrix [12–14], which provides the information if a given state is stable in

the vicinity of a given point and gives a quantitative characteristics of this stability.

The analysis of the method performed by Cejran and Reinhardt [11] has proved the

applicability of this approach for description of internal motions in polyatomic

molecules. The same authors have proposed calculation schemes for such analyses.

This paper presents the applications of the schemes to study the stability of

rovibrational states of the water molecule.
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THE METHOD

The stability matrix is defined [11,12] as the matrix of gradients of forces acting at the singular points

of a problem studied, assumed as the points at which all forces acting in a given system are in equilibrium.

Consequently
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where: V(q i) is the potential of forces acting in a given system, qi (i = 1,…,f) are the coordinates describing

independent motions (f – the number of degrees of freedom), q
i
0(i = 1,…,f) to the singular points at which

the forces cease to act.
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Analysis of the matrix [11,12] shows that if its eigenvalues at a given point q
i
0 are either imaginary or

negative, the motion in the vicinity of this point is stable, and if they are positive, the motion is unstable.

The above method is applied to analyse the stability of the rotational states of the water molecule H2O,

described by the quantum numbers J,k, and for the vibrational state described by the quantum number v.

The rotational states of the water molecule are the solutions to the eigenproblem of water described

by the Hamiltonian [15–17], where
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is the Simons-Parr-Finlan (SPF) potential [18–20], describing the stretching vibrations with an additional

term describing bending vibrations.D iare the constants related to the dissociation energy of the molecule,

and 	 is the reduced mass. An important element of the Hamiltonian, describing the intramolecular energy

flow, and thus nonlinear effects, is the term corresponding to the Coriolis force, so the term including the

expression Jz p�. In order to simplify its form the Augustin-Miller transformation [21] is used, that relates

this term to the Euler angle � [22]. The transformation introduces new components of the rotational

moments of momentum expressed by the formulae

J j kx �� �( ) sin/2 2 1 2 
; J j ky �� �( ) cos/2 2 1 2 
; J kz � (4)

where the angle� and the moment of momentum component along the z axis make a new pair of canonical

variables. After this transformation the Hamiltonian describing the internal states of a three-atomic

molecule becomes
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The critical points are found from the condition of equilibrium of all forces acting at a given point,

that is from the condition (1). Then we get a system of equations of the form
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The equation system with the parameters of the potential describing the rovibrational states of the water

molecule given in [23,24] is solved, and the critical points obtained l1, l2, �0 are substituted into the matrix

elements of the stability matrix given by (2). Analysis of the eigenvalues of the stability matrix gives

information on the character of motions about these points.

RESULTS AND DISCUSSION

Data in Table 1 illustrate changes in the eigenvalues of the stability matrix A for

the electronic and vibrational states (0,0,0) and (0,1,0), for different rotational states

J, k. The calculations have been preformed for � = �, when the horizontal angle of

rotation about the z axis is equal to the valence angle H–O–H. The results for J < 15

are not given, as for such values of J all normal vibrations of the water molecule are

stable and the motions are regular.

Table 2 presents calculations illustrating the dependence of the stability matrix

eigenvalues on the angle of rotation about the new z axis, i.e. on the angle � . A compa-

rison of the data given in Tables 1 and 2 leads to the following conclusions:

1. An increase in the projection of the total angular momentum onto the z axis, leading to

an increase in the Coriolis coupling energy (5), increases the stability of the water

molecule structure. It means, that rotation makes the molecule more rigid, which is

consistent with the gyroscopic effect.

2. Excitation of the bending vibration decreases the stability of normal vibrations, which

leads to the appearance of local vibrations, instead of the normal vibrations typical of

the motions in the rovibrational ground states [25,26].

3. Achange in the angle �, corresponding to the onset of the molecule rotation about the z

axis, changes the situation. The effect of varying this angle on the eigenvalues of the

stability matrix is shown in Table 2. The results imply that during the rotation about

the z axis the character of the bending vibration H–O–H changes from the stable for

any set of quantum numbers (v, J, k) to unstable for certain rotational states at the

angle � = 0. The regions of instability increase with increasing the angle of rotation

(Figs. 1–5). An increase in the quantum number k results in a return to the stable state.

This effect is in agreement with the results of our earlier studies of the internal

dynamics of water molecule atoms [9], showing on the basis of Poincaré cross-sections,

Lyapunov coefficients, and the power spectrum analyses that the rotational excitation

of the bending vibration of the water molecule transforms normal vibrations into local

ones. The transformation occurs through an unstable state appearing at some rota-

tional quantum numbers.
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Table 1. Eigenvalues (×10
–4

) of the stability matrix for the ground electronic and for two vibrational states
(0,0,0) and (0,1,0) as a function of rotational states (J, k) for the rotational angle equal to the valence

angle.

v = 0 J = 50 
 = � v = 1 J = 50 
 = �

k l1 l2 � �l1×10
–4 �l2×10

–4 ��×10
–4

l1 l2 � �l1×10
–4 �l2×10

–4 ��×10
–4

0 0.8961 0.8903 122.2 –6.9175 –6.3495 –2.3274 0.8990 0.8932 122.2 –6.7930 –6.2874 –2.3356

5 0.8977 0.8903 122.1 –6.8767 –6.3493 –2.3520 0.9006 0.8932 122.0 –6.7532 –6.2872 –2.3600

10 0.9024 0.8903 121.7 –6.7588 –6.3487 –2.4225 0.9053 0.8932 121.7 –6.6384 –6.2867 –2.4295

20 0.9198 0.8904 120.5 –6.3473 –6.3428 –2.6626 0.9226 0.8933 120.4 –6.2846 –6.2335 –2.6671

30 0.9455 0.8906 118.8 –6.3427 –5.7935 –2.9623 0.9482 0.8935 118.8 –6.2808 –5.6959 –2.9645

40 0.9770 0.8909 117.1 –6.3367 –5.2079 –3.2589 0.9798 0.8938 117.1 –6.2749 –5.1225 –3.2597

50 1.0131 0.8916 115.4 –6.3199 –4.6505 –3.5189 1.0158 0.8946 115.4 –6.2582 –4.5762 –3.5189

v = 0 J = 55 
 = � v = 1 J = 55 
 = �

k l1 l2 � �l1 ×10
–4 �l2 ×10

–4 �� ×10
–4

l1 l2 � �l1×10
–4 �l2×10

–4 ��×10
–4

0 0.8705 0.8901 125.2 –7.6653 –6.3536 –1.7017 0.8737 0.8930 125.0 –7.5170 –6.2915 –1.7214

5 0.8726 0.8901 125.0 –7.6025 –6.3534 –1.7455 0.8758 0.8930 124.9 –7.4564 –6.2912 –1.7641

10 0.8787 0.8901 124.4 –7.4255 –6.3527 –1.8668 0.8819 0.8930 124.3 –7.2853 –6.2906 –1.8827

20 0.9004 0.8902 122.6 –6.8426 –6.3503 –2.2467 0.9034 0.8931 122.5 –6.7198 –6.2883 –2.2558

30 0.9304 0.8904 120.4 –6.3466 –6.1352 –2.6712 0.9332 0.8933 120.4 –6.2846 –6.0304 –2.6754

40 0.9654 0.8906 118.3 –6.3413 –5.4315 –3.0581 0.9681 0.8936 118.3 –6.2794 –5.3421 –3.0595

50 1.0041 0.8910 116.3 –6.3326 –4.7857 –3.3826 1.0068 0.8940 116.3 –6.2708 –4.7090 –3.3830

55 1.0246 0.8916 115.4 –6.3199 –4.4955 –3.5189 1.0273 0.8946 115.4 –6.2582 –4.4245 –3.5189

v = 0 J = 60 
 = � v = 1 J = 60 
 = �

k l1 l2 � �l1×10
–4 �l2×10

–4 ��×10
–4

l1 l2 � �l1×10
–4 �l2×10

–4 ��×10
–4

0 0.7816 0.8895 138.5 –11.1860 –6.3653 2.1705 0.8163 0.8926 132.7 –9.5418 –6.2986 0.2395

1 0.7813 0.8895 138.6 –11.2039 –6.3654 2.1994 0.8166 0.8927 132.6 –9.5294 –6.2986 0.2262

2 0.7803 0.8895 138.8 –11.2549 –6.3656 2.2828 0.8175 0.8927 132.5 –9.4933 –6.2985 0.1879

3 0.8124 0.8897 133.0 –9.7690 –6.3610 0.3259 0.8189 0.8927 132.3 –9.4363 –6.2983 0.1281

4 0.8147 0.8897 132.6 –9.6752 –6.3607 0.2263 0.8208 0.8927 132.0 –9.3625 –6.2981 0.0515

5 0.8173 0.8897 132.3 –9.5688 –6.3604 0.1156 0.8230 0.8927 131.7 –9.2754 –6.2979 –0.0371

6 0.8201 0.8898 131.9 –9.4541 –6.3601 –0.0008 0.8255 0.8927 131.4 –9.1785 –6.2976 –1.3390

10 0.8331 0.8898 130.2 –8.9590 –6.3587 –0.4740 0.8375 0.8928 129.8 –8.7376 –6.2964 –0.5520

15 0.8510 0.8899 128.1 –8.3321 –6.3569 –1.0148 0.8547 0.8928 127.9 –8.1521 –6.2946 –1.0579

20 0.8698 0.8900 126.1 –7.7349 –6.3550 –1.4809 0.8731 0.8929 126.0 –7.5820 –6.2928 –1.5061

30 0.9091 0.8902 122.7 –6.6634 –6.3508 –2.2225 0.9121 0.8931 122.6 –6.5452 –6.2887 –2.2317

40 0.9501 0.8904 119.8 –6.3457 –5.7517 –2.7765 0.9529 0.8934 119.8 –6.2837 –5.6559 –2.7795

50 0.9927 0.8908 117.4 –6.3386 –4.9790 –3.1989 0.9954 0.8937 117.4 –6.2767 –4.8992 –3.1996

60 1.0372 0.8916 115.4 –6.3199 –4.3336 –3.5189 1.0399 0.8946 115.4 –6.2582 –4.2659 –3.5189
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Table 2. Eigenvalues (×10–4) of the stability matrix for ground electronic and for two vibrational states (0,0,0) and (0,1,0) as a function of rotational states (J, k) for
different rotational angle.

v = 0 J = 15 
 = 0.5 � v = 1 J = 15 
 = 0.5 �

k l1 l2 � �l1×10–4 �l2×10–4 ��×10–4 l1 l2 � �l1×10–4 �l2 ×10–4 ��×10–4

0 0.8600 0.8843 167.4 –86.1317 –64.8133 409.9212 0.8624 0.8872 167.4 –84.7700 –64.1817 410.9537

1 0.9573 0.8912 115.7 –63.2907 –55.1475 –34.6058 0.9600 0.8941 115.7 –62.6731 –54.2156 –34.6090

5 0.9579 0.8912 115.6 –63.2855 –55.0343 –34.6681 0.9606 0.8942 115.6 –62.6680 –54.1049 –34.6710

10 0.9599 0.8913 115.6 –63.2672 –54.6838 –34.8608 0.9626 0.8942 115.5 –62.6500 –53.7621 –34.8627

15 0.9633 0.8916 115.4 –63.1986 –54.1108 –35.1893 0.9660 0.8946 115.4 –62.5823 –53.2018 –35.1893

v = 0 J = 20 
 = 0.3 � v = 1 J = 20 
 = 0.3 �

k l1 l2 � �l1×10–4 �l2×10–4 ��×10–4 l1 l2 � �l1×10–4 �l2×10–4 ��×10–4

0 0.8746 0.8834 167.6 –81.3783 –65.0023 445.4737 0.8770 0.8863 167.6 –80.1007 –64.3681 446.4537

1 0.8747 0.8834 167.6 –81.3580 –65.0032 445.9368 0.8770 0.8863 167.6 –80.0807 –64.3689 446.9177

2 0.8749 0.8834 167.6 –81.2971 –65.0057 447.3352 0.8772 0.8863 167.7 –80.0205 –64.3714 448.3189

3 0.8751 0.8834 167.7 –81.1946 –65.0099 449.6975 0.8775 0.8863 167.7 –79.9193 –64.3755 450.6858

4 0.8755 0.8834 167.8 –81.0492 –65.0159 453.0726 0.8779 0.8862 167.8 –79.7757 –64.3815 454.0676

5 0.8760 0.8833 167.9 –80.8589 –65.0237 457.5338 0.8784 0.8862 167.9 –79.5877 –64.3892 458.5375

6 0.8767 0.8833 168.0 –80.6209 –65.0336 463.1825 0.8790 0.8862 168.0 –79.3527 –64.3990 464.1974

7 0.8775 0.8832 168.1 –80.3315 –65.0458 470.1567 0.8798 0.8861 168.2 –79.0669 –64.4110 471.1854

8 0.9595 0.8912 115.3 –63.2892 –54.7647 –34.8448 0.9622 0.8941 115.3 –62.6717 –53.8412 –34.8467

9 0.8795 0.8831 168.5 –79.5782 –65.0779 488.8826 0.8819 0.8860 168.5 –78.3232 –64.4427 489.9483

10 0.9603 0.8912 115.3 –63.2843 –54.6237 –34.8800 0.9630 0.8942 115.3 –62.6668 –53.7033 –34.8818

15 0.9631 0.8913 115.3 –63.2641 –54.1382 –35.0029 0.9659 0.8943 115.3 –62.6469 –53.2287 –35.0039

20 0.9671 0.8916 115.4 –63.1986 –53.4692 –35.1893 0.9698 0.8946 115.4 –62.5823 –52.5746 –35.1893

v = 0 J = 20 
 = 0.5 � v = 1 J = 20 
 = 0.5 �

k l1 l2 � �l1×10–4 �l2×10–4 ��×10–4 l1 l2 � �l1×10–4 �l2×10–4 ��×10–4

0 0.9563 0.8911 115.9 –63.3221 –55.3231 –34.1456 0.9590 0.8940 115.9 –62.7041 –54.3877 –34.1512

9 0.9585 0.8911 115.8 –63.3087 –54.9360 –34.3620 0.9612 0.8940 115.8 –62.6909 –54.0091 –34.3665

10 0.8553 0.8847 166.0 –88.3115 –64.7089 356.5625 0.8576 0.8876 166.0 –86.9312 –64.0784 357.4923

11 0.8573 0.8846 166.4 –87.5078 –64.7370 369.8945 0.8596 0.8875 166.4 –86.1374 –64.1061 370.8487

12 0.8598 0.8845 166.8 –86.5665 –64.7705 386.1000 0.8621 0.8873 166.8 –85.2078 –64.1393 387.0842

13 0.8626 0.8843 167.3 –85.4598 –64.8109 406.0400 0.8649 0.8872 167.3 –84.1149 –64.1792 407.0614

14 0.9616 0.8912 115.6 –63.2864 –54.3967 –34.6616 0.9643 0.8942 115.6 –62.6689 –53.4816 –34.6645

20 0.9671 0.8916 115.4 –63.1986 –53.4692 –35.1893 0.9698 0.8946 115.4 –62.5823 –52.5746 –35.1893
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Figure 1. Eingenvalues of the stability matrix as a function of rotational quantum number k for sym-

metric stretching vibrations (1), antisymmetric stretching (2) and bending one (3) for � = 0.5�

and J = 15.

Figure 2. Eigenvalues of the stability matrix for � = 0.3 � and J = 20.
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Figure 4. Eigenvalues of the stability matrix for � = 0.3 � and J = 45.

Figure 3. Eigenvalues of the stability matrix for � = 0.5 � and J = 45.
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The following important effect has been observed: The instability of the water

molecule in the range of the bending vibration is compensated by an enhanced

stability of the stretching vibrations changing their character from normal to local.

This fact has been indicated by the Poincaré cross-sections [9], in which the chaotic

movement within the bending vibration (in the region of the bending vibration) does

not eliminate islands of stability of the stretching vibrations in the range of the local

vibrations. This implies a change of the axis about which the rotation takes place. The

approach presented in this paper permits investigation of locally unstable motions of

polyatomic systems, which is important in analysis of the molecule stability after its

rovibrational excitation. Consequence of the calculated instability will be manifested

as a dependence of life time of excited states on rotation quantum number. This effect

has been detected by Aldener et al . for two atomic molecules [10].
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